Server : Apache System : Linux iad1-shared-b8-43 6.6.49-grsec-jammy+ #10 SMP Thu Sep 12 23:23:08 UTC 2024 x86_64 User : dh_edsupp ( 6597262) PHP Version : 8.2.26 Disable Function : NONE Directory : /lib/python3/dist-packages/numpy/polynomial/__pycache__/ |
Upload File : |
o 6��a�� � @ s� d Z ddlZddlmZ ddlmZ ddlm Z ddlmZ g d�Z e jZdd � Zd d� Zdd � Zdd� Zdd� Zdd� Zdd� Zdd� Ze�ddg�Ze�dg�Ze�dg�Ze�ddg�Zdd� Zdd� Zdd� Zdd � Z d!d"� Z!d#d$� Z"d%d&� Z#dSd(d)�Z$dTd*d+�Z%dg dddfd,d-�Z&dUd/d0�Z'd1d2� Z(d3d4� Z)d5d6� Z*d7d8� Z+d9d:� Z,d;d<� Z-d=d>� Z.dVd@dA�Z/dBdC� Z0dDdE� Z1dWdGdH�Z2dIdJ� Z3dKdL� Z4dMdN� Z5dOdP� Z6G dQdR� dRe�Z7dS )Xa� ==================================================== Chebyshev Series (:mod:`numpy.polynomial.chebyshev`) ==================================================== This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including a `Chebyshev` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Classes ------- .. autosummary:: :toctree: generated/ Chebyshev Constants --------- .. autosummary:: :toctree: generated/ chebdomain chebzero chebone chebx Arithmetic ---------- .. autosummary:: :toctree: generated/ chebadd chebsub chebmulx chebmul chebdiv chebpow chebval chebval2d chebval3d chebgrid2d chebgrid3d Calculus -------- .. autosummary:: :toctree: generated/ chebder chebint Misc Functions -------------- .. autosummary:: :toctree: generated/ chebfromroots chebroots chebvander chebvander2d chebvander3d chebgauss chebweight chebcompanion chebfit chebpts1 chebpts2 chebtrim chebline cheb2poly poly2cheb chebinterpolate See also -------- `numpy.polynomial` Notes ----- The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]_: .. math :: T_n(x) = \frac{z^n + z^{-n}}{2} \\ z\frac{dx}{dz} = \frac{z - z^{-1}}{2}. where .. math :: x = \frac{z + z^{-1}}{2}. These identities allow a Chebyshev series to be expressed as a finite, symmetric Laurent series. In this module, this sort of Laurent series is referred to as a "z-series." References ---------- .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev Polynomials," *Journal of Statistical Planning and Inference 14*, 2008 (https://web.archive.org/web/20080221202153/https://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4) � N)�normalize_axis_index� )� polyutils)�ABCPolyBase)"�chebzero�chebone�chebx� chebdomain�chebline�chebadd�chebsub�chebmulx�chebmul�chebdiv�chebpow�chebval�chebder�chebint� cheb2poly� poly2cheb� chebfromroots� chebvander�chebfit�chebtrim� chebroots�chebpts1�chebpts2� Chebyshev� chebval2d� chebval3d� chebgrid2d� chebgrid3d�chebvander2d�chebvander3d� chebcompanion� chebgauss� chebweight�chebinterpolatec C sD | j }tjd| d | jd�}| d ||d d�<