Server : Apache System : Linux iad1-shared-b8-43 6.6.49-grsec-jammy+ #10 SMP Thu Sep 12 23:23:08 UTC 2024 x86_64 User : dh_edsupp ( 6597262) PHP Version : 8.2.26 Disable Function : NONE Directory : /lib/python3/dist-packages/numpy/polynomial/__pycache__/ |
Upload File : |
o 6��a� � @ sv d Z ddlZddlmZ ddlmZ ddlm Z ddlmZ g d�Z e jZdd � Zd d� Ze�ddg�Ze�dg�Ze�dg�Ze�ddg�Zd d� Zdd� Zdd� Zdd� Zdd� Zdd� Zdd� ZdBdd�ZdCdd�Zdg dddfd d!�Z dDd#d$�Z!d%d&� Z"d'd(� Z#d)d*� Z$d+d,� Z%d-d.� Z&d/d0� Z'd1d2� Z(dEd4d5�Z)d6d7� Z*d8d9� Z+d:d;� Z,d<d=� Z-d>d?� Z.G d@dA� dAe�Z/dS )Fa. =================================================================== HermiteE Series, "Probabilists" (:mod:`numpy.polynomial.hermite_e`) =================================================================== This module provides a number of objects (mostly functions) useful for dealing with Hermite_e series, including a `HermiteE` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Classes ------- .. autosummary:: :toctree: generated/ HermiteE Constants --------- .. autosummary:: :toctree: generated/ hermedomain hermezero hermeone hermex Arithmetic ---------- .. autosummary:: :toctree: generated/ hermeadd hermesub hermemulx hermemul hermediv hermepow hermeval hermeval2d hermeval3d hermegrid2d hermegrid3d Calculus -------- .. autosummary:: :toctree: generated/ hermeder hermeint Misc Functions -------------- .. autosummary:: :toctree: generated/ hermefromroots hermeroots hermevander hermevander2d hermevander3d hermegauss hermeweight hermecompanion hermefit hermetrim hermeline herme2poly poly2herme See also -------- `numpy.polynomial` � N)�normalize_axis_index� )� polyutils)�ABCPolyBase)� hermezero�hermeone�hermex�hermedomain� hermeline�hermeadd�hermesub� hermemulx�hermemul�hermediv�hermepow�hermeval�hermeder�hermeint� herme2poly� poly2herme�hermefromroots�hermevander�hermefit� hermetrim� hermeroots�HermiteE� hermeval2d� hermeval3d�hermegrid2d�hermegrid3d� hermevander2d� hermevander3d�hermecompanion� hermegauss�hermeweightc C sF t �| g�\} t| �d }d}t|dd�D ]}tt|�| | �}q|S )a� poly2herme(pol) Convert a polynomial to a Hermite series. Convert an array representing the coefficients of a polynomial (relative to the "standard" basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to highest degree. Parameters ---------- pol : array_like 1-D array containing the polynomial coefficients Returns ------- c : ndarray 1-D array containing the coefficients of the equivalent Hermite series. See Also -------- herme2poly Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy.polynomial.hermite_e import poly2herme >>> poly2herme(np.arange(4)) array([ 2., 10., 2., 3.]) r r ���)�pu� as_series�len�ranger r )�pol�deg�res�i� r. �</usr/lib/python3/dist-packages/numpy/polynomial/hermite_e.pyr a s &r c C s� ddl m}m}m} t�| g�\} t| �}|dkr| S |dkr!| S | d }| d }t|d dd�D ]}|}|| |d ||d �}||||��}q1||||��S )a Convert a Hermite series to a polynomial. Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an array of the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest to highest degree. Parameters ---------- c : array_like 1-D array containing the Hermite series coefficients, ordered from lowest order term to highest. Returns ------- pol : ndarray 1-D array containing the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest order term to highest. See Also -------- poly2herme Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy.polynomial.hermite_e import herme2poly >>> herme2poly([ 2., 10., 2., 3.]) array([0., 1., 2., 3.]) r )�polyadd�polysub�polymulx� ���r% )� polynomialr0 r1 r2 r&