Server : Apache System : Linux iad1-shared-b8-43 6.6.49-grsec-jammy+ #10 SMP Thu Sep 12 23:23:08 UTC 2024 x86_64 User : dh_edsupp ( 6597262) PHP Version : 8.2.26 Disable Function : NONE Directory : /lib/python3/dist-packages/numpy/polynomial/__pycache__/ |
Upload File : |
o 6��a�� � @ sn d Z ddlZddlmZ ddlmZ ddlm Z ddlmZ g d�Z e jZdd � Zd d� Ze�ddg�Ze�dg�Ze�dg�Ze�ddg�Zd d� Zdd� Zdd� Zdd� Zdd� Zdd� Zdd� Zd@dd�ZdAdd�Zdg dddfd d!�Z dBd#d$�Z!d%d&� Z"d'd(� Z#d)d*� Z$d+d,� Z%d-d.� Z&d/d0� Z'd1d2� Z(dCd4d5�Z)d6d7� Z*d8d9� Z+d:d;� Z,d<d=� Z-G d>d?� d?e�Z.dS )Da� ================================================== Legendre Series (:mod:`numpy.polynomial.legendre`) ================================================== This module provides a number of objects (mostly functions) useful for dealing with Legendre series, including a `Legendre` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Classes ------- .. autosummary:: :toctree: generated/ Legendre Constants --------- .. autosummary:: :toctree: generated/ legdomain legzero legone legx Arithmetic ---------- .. autosummary:: :toctree: generated/ legadd legsub legmulx legmul legdiv legpow legval legval2d legval3d leggrid2d leggrid3d Calculus -------- .. autosummary:: :toctree: generated/ legder legint Misc Functions -------------- .. autosummary:: :toctree: generated/ legfromroots legroots legvander legvander2d legvander3d leggauss legweight legcompanion legfit legtrim legline leg2poly poly2leg See also -------- numpy.polynomial � N)�normalize_axis_index� )� polyutils)�ABCPolyBase)�legzero�legone�legx� legdomain�legline�legadd�legsub�legmulx�legmul�legdiv�legpow�legval�legder�legint�leg2poly�poly2leg�legfromroots� legvander�legfit�legtrim�legroots�Legendre�legval2d�legval3d� leggrid2d� leggrid3d�legvander2d�legvander3d�legcompanion�leggauss� legweightc C sF t �| g�\} t| �d }d}t|dd�D ]}tt|�| | �}q|S )a. Convert a polynomial to a Legendre series. Convert an array representing the coefficients of a polynomial (relative to the "standard" basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Legendre series, ordered from lowest to highest degree. Parameters ---------- pol : array_like 1-D array containing the polynomial coefficients Returns ------- c : ndarray 1-D array containing the coefficients of the equivalent Legendre series. See Also -------- leg2poly Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy import polynomial as P >>> p = P.Polynomial(np.arange(4)) >>> p Polynomial([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1]) >>> c = P.Legendre(P.legendre.poly2leg(p.coef)) >>> c Legendre([ 1. , 3.25, 1. , 0.75], domain=[-1, 1], window=[-1, 1]) # may vary r r ���)�pu� as_series�len�ranger r )�pol�deg�res�i� r. �;/usr/lib/python3/dist-packages/numpy/polynomial/legendre.pyr d s (r c C s� ddl m}m}m} t�| g�\} t| �}|dk r| S | d }| d }t|d dd�D ]"}|}|| |d ||d | �}||||�d| d | �}q+||||��S )a� Convert a Legendre series to a polynomial. Convert an array representing the coefficients of a Legendre series, ordered from lowest degree to highest, to an array of the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest to highest degree. Parameters ---------- c : array_like 1-D array containing the Legendre series coefficients, ordered from lowest order term to highest. Returns ------- pol : ndarray 1-D array containing the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest order term to highest. See Also -------- poly2leg Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy import polynomial as P >>> c = P.Legendre(range(4)) >>> c Legendre([0., 1., 2., 3.], domain=[-1, 1], window=[-1, 1]) >>> p = c.convert(kind=P.Polynomial) >>> p Polynomial([-1. , -3.5, 3. , 7.5], domain=[-1., 1.], window=[-1., 1.]) >>> P.leg2poly(range(4)) array([-1. , -3.5, 3. , 7.5]) r )�polyadd�polysub�polymulx� ���r% � )� polynomialr0 r1 r2 r&